Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering		
Semester :	5		
Course Code:	17CVL57		
Course Title:	Geotechnical engineering laboratory		
Credit / L-T-P:	02/ 0-0-3		
Total Contact Hours:	42		
Course Plan Author:	SHIVAPRASAD D G/SHIVASHANKAR R		

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23721477/23721315 www.Skit.org, Email: skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION 1. Laboratory Overview	4 4 4
1. Laboratory Overview	4 4
	4
2. Laboratory Content	
3. Laboratory Material	4
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	5
1. General Instructions	5
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	9
1. Laboratory Coverage	9
2. CONTINUOUS INTERNAL ASSESSMENT (CIA)	10
	.11
Experiment 01: Detailing of RC Beams	.11
Experiment 02: Detailing of RC Stabs	.12
Experiment 03 . Detailing of RC StallCase	.13 12
Experiment 05 cross section of pavement	.⊥3 1⊿
Experiment 06 Preparing detailed working drawing of Sentic Tank and	. 14
sedimentation Tank	15
Experiment 07 : Layout plan of Rainwater recharging and harvesting system	.16
Experiment 08 : Cross sectional details of a road for a Residential area with	
provision for all services	16
Experiment 09 : Single and Double story residential building	.17
Experiment 10 : Detailing of steel roof truss	18
Experiment 11 : hostel building	19
Experiment 12 : hospital building	19
F. Content to Experiment Outcomes	20
1. TLPA Parameters	20
2. Concepts and Outcomes:	.21

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	CV
Year / Semester :	2/5	Academic Year:	2018-19
Course Title:	Geotechnical engineering laboratory	Course Code:	17CVL57
Credit / L-T-P:	2 / 0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	5/1 Experiment
Course Plan Author:	SHIVAPRASAD D G/SHIVASHANKAR R	Sign	Dt : 14-04-2019
Checked By:	Mohan K T	Sign	Dt : 16-04-2019

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Visual soil classification.	06	Index	L3
			properties	Apply
2	Grain size analysis	03	Soil	L3
			classificatio	Apply
			n	
3	In-situ density tests	03	Analysis of	L3
			Field	Apply
			Density	
4	Consistency limits	03	Consistency	L3
			Limits	Apply
5	compaction test	03	Analysis of	L3
			Density and	Apply
			Moisture	
			content	
6	Co-efficient of permeability test	03	Permeabilit	L3
			y Analysis	Apply
7	Shear strength tests	09	Shear	L3
			Strength of	Apply
			Soils	
8	Consolidation test	03	Consolidati	L3
			on Index	Apply
9	Laboratory vane shear test	03	Shear	L3
			Strength of	Apply
			Soils	
10	Demonstration of Swell pressure test, Standard penetration test	06	Demonstrat	L2
	and boring equipment		ion	Understa
				nd

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1-10	Punmia B C, Soil Mechanics and Foundation Engineering, Laxmi	1-10	In Lib
	Publications co., New Delhi.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=5D99H8pGPhQ		
C2	https://www.youtube.com/watch?v=CAezS3mPzOc		
C3	https://www.youtube.com/watch?v=C10dklH12W0		

C4	https://www.youtube.com/watch?v=OsqmmBIm_gc		
C5	https://www.youtube.com/watch?v=c4i_y6u-tsE		
C6	https://www.youtube.com/watch?v=mfAj5zSWGzM		
C7	https://www.youtube.com/watch?		
	v=GN8V7UGQwb8&list=PLSNhedsleX11ijsL3SDSg1lgklLrn9lW_		
C8	https://www.youtube.com/watch?v=XRlFvjG_6AY		
C9	https://www.youtube.com/watch?v=fhub_nMvfBE		
C10	https://www.youtube.com/watch?v=Mnfw5kEkA1Y		
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15CV45	Basic	Fundamentals of Soil Mechanics,	4		Understa
		Geotechnical	Index and Engineering Properties			nd L2
		Engineering	etc.			
2						
3						
5						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
1				
3				
3				
5				
-				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	

4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	When the experiment is completed, should return all the components/instruments taken for the purpose.	
8	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
9	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Before conducting any test, students shall come prepared with theoretical	
	background of the corresponding test (indicated under the section'theory' in	
	each test).	
2	Students shall make sure to have the knowledge of using weighing	
	balance ,oven.	
3	Students shall give importance to accuracy and precision while conducting	
	the test and interpreting the results	
4	Students shall acquaint themselves with the safe and correct usage of	
	instruments / equipments under the guidance of teaching / supporting	
	staff of the laboratory	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	17CVL57.1	compute the index properties of soil by different laboratory experiments.	. 1	Evaluate physical and index properties of the soil	CO1	L3	L3 Apply
2	17CVL57.2	draw the particle size distribution curve of different types of soils and classify the soils as per the result	2	Ability to classify the soil	CO2	L3	L3 Apply
3	17CVL57.3	determine field density using sand replacement and core cutter methods, and compare the results.	3	Ability to find dry density of given soil	CO3	L3	L3 Apply
4	17CVL57.4	find the consistency limits of soil	4	Determinatio n of plasticity index of soil	CO4	L3	L3 Apply
5	17CVL57.5	calculate the optimum moisture content and maximum dry density using Standard Proctor Test	5	Find OMC and MDD, plan and asses field compaction program	CO5	L3	L3 Apply
6	17CVL57.6	compute the co-efficient of	6	Design of	CO6	L3	L3

		permeability through different types of soils by constant head and falling head methods		earth dams			Apply
7	17CVL57.7	calculate the shear strength of soil, and shear parameters from different laboratory tests Direct shear test ,Unconfined compression testand triaxial test	7	Ability to find Shear strength parameters to assess strength and deformation characteristi cs of soil	CO7	L3	L3 Apply
8	17CVL57.8	calculate co-efficients related to compressibilty and consolidation by different methods	8	Ability to find consolidatio n strength parameters to assess strength and deformation characteristi cs of soil	CO8	L3	L3 Apply
9	17CVL57.9	calculate the shear strength of soil, and shear parameters from laboratory Vane shear test	9	Ability to find Shear strength parameters to assess strength and deformation characteristi cs of soil	COg	L3	L3 Apply
10	17CVL57.10	understand the demonstration of the tests.	10	Understand In situ shear strength characteristi cts	CO10	L2	L2 Undesta nd
		Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Evaluate physical and index properties of the soil	CO1	L3
2	Ability to classify the soil	CO2	L3
3	Ability to find dry density of given soil	CO3	L3
4	Determination of plasticity index of soil	CO4	L3
5	Find OMC and MDD, plan and asses field compaction program	CO5	L3
6	Design of earth dams	CO6	L3
7	Ability to find Shear strength parameters to assess strength and deformation characteristics of soil	C07	L3
8	Ability to find consolidation strength parameters to assess strength and deformation characteristics of soil	CO8	L3
9	Ability to find Shear strength parameters to assess strength and deformation characteristics of soil	CO9	L3
10	Understand In situ shear strength characteristicts	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. 17CVL57 / B Copyright ©2017. cAAS. All rights reserved.

Expt	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
1			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the Index Properties of soil	L2
1	CO1	PO4	L3	Computation of Index Properties of soil plays the major role in determination of Engineering Properties and Subsoil Investigation.	L3
2	CO2	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to classify various soils according to its particle size	L6
2	CO2	PO4	L3	Classification of soil according to the grain size is essential for the field identification of soil as well as selection of test procedures, boring procedures, modifications and improvements etc	L2
3	CO3	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to calculate the field density of soils	L3
3	CO3	PO4	L3	Determination of field density is an essential for the compaction control procedure, estimation of bearing capacity, calculation of stresses on soil mass, determination of active and passive earth pressure etc.	L6
4	CO4	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to calculate liquid limit plastic limit and shrinkage limit. And consisstency indices	L2
4	CO4	PO4	L3	Determination of plasticity index is an essential for knowing compressibility of soil.	L3
5	CO5	PO1	L3	Application of the fundamentals of Soil Compaction will help the students to calculate the requirements of field compaction	L6
5	CO5	PO4	L3	Determination of optimum moisture content and maximum dry density is essential for the conduct of field compaction	L2
6	CO6	PO1	L3	Application of the fundamentals of Soil Water & Permeability will help the students to analyze the flow of water through the soil mass	L3
7	CO7	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the shear strength of various soils	L6
7	CO7	PO2	L3	Computation of shear strength is unavoidable for the analysis of geohazards, foundation failures, problems in slope stability etc	L2
7	CO7	PO4	L3	Determination of shear strength is extremely important for subsoil investigations, slope stability, construction of structures on weak soil etc.	L3
8	CO8	PO2	L3	Essential for the determination of differential/total settlement in soft/problematic soil conditions	L6
8	CO8	PO4	L3	Settlement determination is unavoidable before the construction in soft/problematic soil conditions	L2
9	CO9	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the shear strength of various soils	L3
10	CO10	PO1	L2	Students have engineering knowledge on swelling of soil, and boring	L2

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

										<u> </u>	/							
-	-	Experiment Outcomes					Ρ	rog	ram	ι Οι	utco	ome	s					-
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	17CVL57.1	Students are able to compute	2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	L3
		the index properties of soil by																
		different laboratory experiments.																
2	17CVL57.2	Students are able to to draw the	2	-	-	3	-	I	-	-	-	-	-	-	1	-	-	L3
		particle size distribution curve of																
		different types of soils and																
		classify the soils as per the result																
3	17CVL57.3	Students are able to determine	2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	L3
		field density using sand																

LABORATORY PLAN - CAY 2019-20

_					_						_			_	_				
			replacement and core cutter methods, and compare the results.																
	4	17CVL57.4	Students are able to find the consistency limits of soil	3	-	-	3	-	-	I	-	-	-	-	-	-	-	-	L3
	5	17CVL57.5	Students are able calculate the optimum moisture content and maximum dry density using Standard Proctor Test	2	-	-	3	-	-	I	-	-	-	-	-	-	-	-	L3
	6	17CVL57.6	Students are able to compute the co-efficient of permeability through different types of soils by constant head and falling head methods	2	-	-	-	-	-	-	-	_	-	-	-	_	-	-	L3
	7	17CVL57.7	Students are able to calculate the shear strength of soil, and shear parameters from different laboratory tests Direct shear test ,Unconfined compression testand triaxial test	2	3	-	3	-	-	-	-	-	-	-	-	-	-	-	L3
	8	17CVL57.8	Students are able to calculate co-efficients related to compressibilty and consolidation by different methods	_	3	-	3	-	-	I	-	-	-	-	-	-	-	-	L3
	9	17CVL57.9	Students are able to calculate the shear strength of soil, and shear parameters from laboratory Vane shear test	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
	10	17CVL57.10	Students are able to understand the demonstration of the tests.	3	-	-	-	-	-	-	-	-	-	-	-		-	-	L2
			Average	2.1	0.6	-	1.8	-	-	-	-	-	-	-	-	-	-	-	L6
	-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and St 10.Communication; 11.Project N	lem lex i ustc Man	Ar Prol aina age	haly bler bilit eme	vsis; ms; y; ent	3.L 5.M 8.E ar	Desi ode thic id	ign ern :s; Fir	7 Too 9.li nan	Dev LUS ndiv ce;	velo sage vidu 12	pm e; 6. al Life	ent The an e-lo	of e En d ng	So Igin Tea Le	əluti eer ımx zarr	ons; and ork; ning;
			SI SULWARE ENAINEERINA: S2.DATA E	suse	2 M(นกด	uen	nen	LS	⊰.W	ep l	Jes	ıqn						

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					

5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		No. of question in Exam 1 CIA-2 CIA-3 Asg-1 Asg-2 Asg-3 SE - - - - 1 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 1 - - - 1 1 - - - 1 1 - - - 1 1 - - - 1 - 1 - - 1 - 1 - - 1 - 1 - - 1 - 1 - - 1 - 1 - - 1 - 1 - - 1 - - - 1 - - - - - - 1 -<				CO	Levels		
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Visual soil classification.	06	1	-	-	-	-	-	1	CO1	L3
2	Grain size analysis	03	1	-	-	-	-	-	1	CO2	L3
3	In-situ density tests	03	1	-	-	-	-	-	1	CO3	L3
4	Consistency limits	03	-	1	-	-	-	-	1	CO4	L3
5	Standard compaction test	03	-	1	-	-	-	-	1	CO5	L3
6	Co-efficient of permeability test	03	-	1	-	-	-	-	1	CO6	L3
7	Shear strength tests	09	-	-	1	-	-	-	1	CO7	L3
8	Consolidation test	03	-	-	1	-	-	-	1	CO8	L3
9	Laboratory vane shear test	03	-	-	1	-	-	-	1	CO9	L3
10	Demonstration of Swell pressure	06	-	-	-	-	-	-	1	CO10	L2
	test, Standard penetration test										
	and boring equipment										
-	Total	42	3	3	3	-	-	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1, CO2, CO3	L3,L3,L3
CIA Exam – 2	15	CO4 ,CO5, CO6	L3,L3,L3
CIA Exam – 3	15	CO7 ,CO8, CO9	L3,L3,L3
Assignment - 1	05	CO1, CO2, CO3	L3,L3,L3
Assignment - 2	05	CO4 ,CO5, CO6	L3,L3,L3
Assignment - 3	05	CO7 ,CO8, CO9	L3,L3,L3
Seminar - 1	-		
Seminar - 2	-		
Seminar - 3	-		
	-		
Other Activities – define –		CO1 to Co9	L2, L3, L4
Slip test			
Final CIA Marks	20	-	-
_			

Description

-	Total	100 Marks
5	SEE	80 Marks
4	Internal Assessment	20 Marks
3	Internal Exam Assessment	08 Marks
2	Record Writing	08 Marks for each Expt
1	Observation and Weekly Laboratory Activities	04 Marks

E. EXPERIMENTS

Experiment 01: Visual soil classification.

-	Experiment No.:	1	Marks		Da	te ned		Date Conducted				
1	Title	Vis	ual soil classifi	ication.	i tan	iicu		oonducted				
2	Course Outcomes	Stu lab	dents are at oratory experi	ole to cor ments.	npute 1	the ind	lex propert	ies of soil	by differen			
3	Aim	To me	determine the thod	e Water cor	ntent by	oven d	Irying meth	od and infra	red moisture			
4	Material / Equipment Required		 Lab manu Oven container Balance soil samp 	ual rs ble.								
5	Theory, Formula, Principle, Concept		 soil sample. Clean the water content and find the weight with lid \V(t 									
6	Procedure		 Clean the Put the r the lid tal Keep the temperat Takeout f container Determin 	e water con equired qu ke the weig e container cure of the c the contair r with lid an he the wate	tent and lantity c lantity c lant W2. in the oven be her, repl land dry so r conter	d find th oven w tween 1 ace the bil samp nt in the	ne weight w ample in th with the lic 105° C to 110 e lid and fir ole. • wet soil us	ith lid W1 le container l removed a 0° C for abou nd the weigh ing formula.	and replace nd maintair t 24 hours. It W3 of the			
7	Diagram											
8	Observation Table	Sl.I	No	1 2	2	3	4	5				
		Со	ntainer No.									
		We co	eight of the ntainer W1 gm	ı I								
		We co we	eight of ntainer and et soil W2 gm									
		We co dry	eight of ntainer and / soil W3 gm									
		(We	eight of dry so '3-W1) gm	il								

		Weight of wet soil (W2-W1) gm	
		Water content ={(W2-W3)/(W3- W1)}*100	
		Average content of the soil	
9	Sample Calculations		
10	Graphs, Outputs	• -	
		• _	
11	Results & Analysis	• _	
		• _	
12	Application Areas	Evaluate physical and index properties of the soil	
13	Remarks		
14	Faculty Signature with Date		

-	Experiment No.:	1	Marks		Date		Date Conducted					
1	Title	Vis	ual soil classi	fication	i tannea		conducted					
2	Course Outcomes	Stu lab	dents are a oratory expe	able to com riments.	npute the in	idex proper	ties of soil	by different				
3	Aim	To	determine th	e specific gra	avity of by py	cnometer ar	nd density bo	ttle method				
4	Material / Equipment Required		 Lab Manual Pycnometer with a conical cap screwed at its top Balance, sensitive to 0.2 g Wash bottle with desired, distilled water Glass rod, about 150 mm and 3 mm diameter Thermostatically controlled oven. 									
5	Theory, Formula,	Spe	Specific gravity -true specific gravity, apparent specific gravity; significance									
	Principle, Concept	and uses • GT ={(M2 -M1) - (M3 -M4)}/(M2 -M1) • Average specific gravity at 27°C = G27 = G _T *{(G) <i>water T/(G)water 27</i> }										
6	Procedure		 Clean the Pycrometry Introduce Pycnometry Fill the thorouge aside for water us outside Clean the top of the mass to the calcula well as 	ne Pycnome nometer with ce about 40 neter. Record along with the Pycnometer ghly with the or about 4 hrs up to the to and record i he Pycnome conical cap. the nearest the steps (2) te the speci at 27°C.	ter or density its cap and v o g of oven d the mass ne soil (M2). with distille soil using th soil u	y bottle, and washer, accu of the Coars of the Pych d water to h ne glass rod of this period of this period of this period of this period of this period of this period of	I dry it. Find arate to 1.0 g se grained s ometer with half its heigh Keep the e d, fill the Pycr ry the Pycro distilled wa moutside ar he room ten	the mass of (MI). oil in to the its cap and it, and mix it ontire system iometer with ometer from ter up to the nd record its nperature as				
7	Diagram			Rubber Rubber Screw Ing Olass								

•				1	1	1
8	Observation lable	Determination No.	1	2	3	
		Pycnometer No.				
		Mass of Pycnometer (M1) g				
		Mass of (Pycnometer or Density bottle + soil) (M2) g				
		Mass of (Pycnometer or Density bottle + soil + water) (M3) g				
		Mass of (Pycnometer or Density bottle + water) (M4) g				
		Specific gravity				
		Average specific gravity at lab temperature (GT)				
		Average specific gravity at 27°C (G27)				
0	Sample Calculations					
10	Graphs, Outputs	• - • -				
11	Results & Analysis	• -				
12	Application Areas	Evaluate physical and in	dex properties	of the soil		
13	Remarks					
14	Faculty Signature with Date					

Experiment 02 : Grain size analysis

-	Experiment No.:	2	Marks		Date		Date				
					Planned		Conducted				
1	Title	Grain	size analysis	5							
2	Course Outcomes	Stude	ents are able	to to draw th	ne particle siz	ze distributio	n curve of di	fferent types			
		of soi	ls and classi	fy the soils as	s per the resu	ılt					
3	Aim	To de	termine the	grain size dis	tribution of t	he given soil	by dry sievin	g.			
4	Material /	•	Lab Manu	al							
	Equipment	•	• Set of IS sieves: 4.75mm, 2.36mm, 1.18mm, 600 micron, 425 micron, 300								
	Required		micron, 212 micron, 150 micron, 75 micron.								
		•	Brushes to clean the sieves								
		•	Mechanic	al sieve shak	er						
		•	Balance								
		•	Trays								
		•	Thermost	atically contr	olled hot air	oven					
5	Theory, Formula,	Partic	le size class	ification of sc	oils: IS system	ı, MIT system	n, Differentiat	ion: clay			
	Principle, Concept	size fi	raction and o	clays; particle	e size distribi	ution curves,	characterist	ic sizes, well			
		grade	ed and poorly	y graded soil	s; gradation (characteristic	S				
6	Procedure,	•	Arrange tł	ne sieves one	e above the c	other such th	at 4.75 mm s	ieve is at the			
			top and 7	5 micron sie	ve is at the l	oottom. Plac	e a cover at	the top and			
			receiver a	t the bottom.							
		•	Fix the se	t of sieves to	o the mecha	nical sieve s	haker. Opera	ate the sieve			
			shaker for	a minimum (of 10 minutes	S					

		 Care eac Calo Calo Plot diar enc Rec clay Rec Calo Calo 	 Carefully collect and record the mass of the soil fraction retained on each sieve and also in the pan. Calculate the cumulative mass of soil fraction retained on each sieve. Calculate the percentage finer. Plot a graph of percentage finer (along y-axis) V/S equivalent particle diameter in mm (along x-axis in log scale). Draw a smooth curve encompassing the plotted points. Record the values of percentage sand, percentage silt and percentage clay size fractions from the graph. Record D10, D30 and D60 from the graph. Calculate coefficient of curvature (C_c) and coefficient of uniformity (C_u). Classify the soil based on gradation. 										
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph												
8	Observation Table,	Total mass	īotal mass of soil taken for analysis = M =g.										
		IS Sieve	Particle size D, mm	Mass retained (g)	Cumulativ e mass reatained (g)	% cumulative retained	% finer						
		4.75 mm	4.75 mm										
		2.36 mm	2.36 mm										
		1.18 mm	1.18 mm										
		600 micron	0.6 mm										
		425 micron	0.425 mm										
		300 micron	0.3 mm										
		150 micron	0.15 mm										
		75 micron	0.075 mm										
		Pan	-										
9	Sample Calculations	• The given soil is grained. • (i) % sand = (ii) % silt = (iii) % clay size = • (i) D_{10} = (ii) D_{30} = (iii) D_{60} = • (i) Coefficient of uniformity = C_U = D_{60} / D_{10} = • (ii) Coefficient of curvature = $C_C = (D_{30})^2 / (D_{60} \times D_{10})$ = • Particle size and gradation classification of the given soil:											
10	Graphs, Outputs												
11	Results & Analysis												
12	Application Areas	Ability to classify the soil											
13	Remarks	,	,										
14	Faculty Signature with Date												

-	Experiment No.:	2	Marks		Date		Date				
					Planned		Conducted				
1	Title	Grain	arain size analysis								
2	Course Outcomes	Stude	students are able to determine the grain size distribution of soil								

3	Aim	To determine the grain size distribution of the given soil by Hydrometer analysis
1	Material /	• Lab Manual
4	Fauinment	Three 1000 ml capacity measuring jars
	Required	Hydrometer
		Mechanical stirrer
		Balance
		 Dispersion agents- Sodium hexa meta phosphate and sodium carbonate
		Thermostatically controlled hot air oven
		Stop watch
5	Theory, Formula,	Sedimentation analysis: Principle and assumptions made; Hydrometer analysis;
	Principle, Concept	Calibration of hydrometer, corrections to hydrometer readings.
6	Procedure	Calibrate the hydrometer to be used in the test.
		Determine the meniscus correction.
		 Take about 50 g of oven dried soil sample passing 75 μ IS sieve.
		Subject the soil to pre-treatment to remove soluble salts or organic
		matter or calcium compounds, if necessary.
		Dissolve 3.3 g of sodium nexa meta phosphate and 0.7 g of sodium
		carbonate in 100 mit distilled water. Transfer the solution to 1000 mit
		capacity jar and add distilled water to make the volume of the solution to
		composite correction).
		• Take the measured quantity of soil in a beaker. Add 100 ml of solution
		prepared by dissolving 3.3 g of sodium hexa meta phosphate and 0.7 g
		of sodium carbonate in distilled water to the beaker.
		Warm the soil suspension gently for about 10 minutes.
		• Transfer the soil suspension to the cup of a mechanical stirrer using
		about 100 ml of distilled water. Stir the suspension for about 15 minutes.
		• Transfer the stirred soil suspension to another 1000 ml capacity
		measuring jar.
		Add distilled water to the suspension to make its volume to 1000 ml.
		Place suitable covers on the top of the two 1000 ml measuring jars -
		one containing the dispersion agent solution and the other containing
		nlace them clevely on a lovel platform. Start a stop watch immediately
		 Insert the hydrometer in to the jar containing the soil suspension slowly.
		and allow it to float freely
		 Note down the hydrometer readings corresponding to upper meniscus
		after suitable time intervals or note down the time intervals
		corresponding to well defined hydrometer readings.
		• After 4 minutes reading, take out the hydrometer from the jar, rinse it
		with distilled water and allow it to stand in another 1000 ml jar containing
		distilled water.
		• Insert the hydrometer in to the jar containing soil suspension from time
		to time and note down the hydrometer readings and corresponding time
		intervals. After removing the hydrometer from the jar each time, rinse it
		with distilled water and store it in the jar containing distilled water.
		Record the temperature of the soil suspension and the composite
		correction in the beginning of the test and also after each time the
		hydrometer reading is taken beyond 15 minutes period.
		Calculate the equivalent diameter of the soil particles corresponding to
		the noted time intervals (D) and also the corresponding values of
		percentage liner based on the ary mass of the soil sample taken for the
		drain size analysis(N)
		 Grave out the test till the equivalent diameter of the particles is less than
		2 lim
		• Using the values of equivalent diameter of the particles (D) and the
		values of corresponding percentage finer (N), plot the grain size
		distribution curve. From the plotted curve, note down the percentage of

			silt siz	ze and	clay siz	ze fract	ions pr	resent	in the s	oil.			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph												
8	Observation Table	• • • • • •	 Mass of total dry soil taken for the analysis (M) =g Mass of the dry soil fraction passing 75 µ sieve (M') = g Mass of the dry soil sample taken for the test (Md) = g Specific gravity of soil solids passing 75 µ sieve (G) =										
		Date	Time	Elaps ed time (t)	Hydr omet er readi ng (Rh')	Tem perat ure	Com posit e corre ction (C)	Rh = Rh' + Cm	Effec tive dept h (HR)	D	R = Rh'+C	% finer base d on M'	% finer base d on M
9	Sample Calculations												
10	Graphs, Outputs												
11	Results & Analysis												
12	Application Areas	Ability	to clas	sify the	e soil								
13	Remarks												
14	Faculty Signature with Date												

Experiment 03 : In-situ density tests

-	Experiment No.:	3	Marks		Date Planned		Date Conducted				
1	Title	In-sit	u density tes	ts			1				
2	Course Outcomes	Stude cutte	ents are able r methods, a	e to determir nd compare	ie field dens the results.	ty using sar	nd replaceme	ent and core			
3	Aim	To de	etermine the	dry density c	f the soil <i>in-s</i>	<i>itu</i> by sand r	eplacement	method:			
4	Material / Equipment Required	· · · · · · · · · · · · · · · · · · ·	 O determine the dry density of the soil <i>in-situ</i> by sand replacement method: Lab Manual Sand pouring cylinder with a pouring cone at its bottom separated from it by a shutter. Cylindrical calibrating container, 100 mm internal diameter and 150 mm internal depth, with a flange. Glass plate, about 45cm square and 1cm thick. Metal tray with a central circular hole of diameter equal to the diameter of the sand pouring cone at its outlet. Tools for excavating the hole. Balance accurate to 1g. Containers for water content determination. Thermostatically controlled hot air oven. Clean, uniformly graded natural sand passing the 600 micron IS sieve 								
5	Theory, Formula,	Sand	replacemen	t method of	determining <i>i</i>	<i>n situ</i> dry de	nsity - praction	cal			

	Principle, Concept	significance.
6	Procedure	(a) Determination of the Bulk density of the sand:Fill the sand in the sand pouring cylinder up to a height 1cm below the
		 Determine the total initial mass of the cylinder up to a height fem betow the stop. Determine the total initial mass of the cylinder with the sand (M1), which is to be maintained constant throughout the test. Keep the cylinder on a glass plate. Open the shutter and allow the sand to run out. Close the shutter when no movement of sand is observed. Remove the cylinder and record the mass of the sand collected on the glass plate (M2). This represents the mass of the sand filling the cone portion of the sand pouring cylinder. Place the sand back into the cylinder to maintain the constant mass M1. Measure the inner diameter and height of the calibrating container and hence, determine the volume of the calibrating container. Open the shutter, and allow the sand to the run into the container. Close the shutter when no further movement of sand is observed. Remove the cylinder and record its mass along with the remaining sand (M3). Put the sand back into the container to maintain the constant mass M1. Calculate the density of sand in the cylinder. (b) Determination of the dry density of the soil in-situ: Level the surface where the in-situ density of the soil is required to be determined. Keep the metal tray on the level surface and excavate a circular hole of about 15 cm deep. Collect the excavated soil (M), and keep some soil for moisture content determination. Remove the tray and place the cylinder with sand on the excavated hole. Open the shutter, and allow the sand to run into the hole. When the no further movement of the cyle and is determine the mass of the sand seen, close the shutter. Determine the mass of the sand is seen, close the shutter. Determine the mass of the cylinder with the remaining sand in it (M4). Determine the bulk density, field water content and field dry density of the soil.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table	Observations and Calculations (a) Determination of the bulk density of sand: 1. Inside diameter of the calibrating container (d) cm = 2. Inside height of the calibrating container (h) cm = 3. Volume of the calibrating container (Vc) cm3 = 4. Mass of the (sand + cylinder) before pouring (M1) g. = 5. Mass of the sand in the cone (M2) g. = 6. Mass of the (sand + cylinder), after pouring into the calibrating container (M3) g. = 7. Mass of the sand, filling the calibrating container (Msand) = (M1 – M3 – M2) g. = 8. Bulk density of the sand (×s) = (Msand / Vc) g/cm3 = (b) Determination of the bulk density of the soil in-situ: 1. Mass of the wet soil excavated from the hole (M) g. = 2. Mass of (sand + cylinder) after pouring into the hole (M4) g. = 3. Mass of sand in the hole (Mh) = (M1- M4 – M2) g. = 4. Volume of the hole (V) cm3 = 5. Bulk density of the soil in-situ (×b)
9	Sample	
	Calculations	
10	Graphs, Outputs	

11	Results & Analysis	Average insitu field dry density: =
12	Application Areas	Ability to find dry density of given soil
13	Remarks	
14	Faculty Signature	
	with Date	

-	Experiment No.:	3	Marks		Date Planned		Date Conducted				
1	Title	In-situ	a density tes	ts							
2	Course Outcomes	Stude	nts are able	e to determir	ne field dens	ity using sar	nd replaceme	ent and core			
		cutter	methods, a	nd compare	the results.	, 0					
3	Aim	To de	termine the	dry density c	f the soil <i>in-s</i>	<i>itu</i> by core c	utter method	:			
4	Material / Equipment Required	a) b) c) d) e) f)	 a) 1. Cylindrical core cutter of steet, 127.4 mm tong and 100 mm internal diameter with awall thickness of 3 mm, bevelled at one end. b) 2. Steel dolly, 25 mm high and 100 mm internal diameter with a wall thickness of 7.5 mm, with a lip to enable it to be fitted on the top of the core-cutter. c) 3. Steel rammer d) 4. Knife e) 5. Grafting tool or pickaxe or spade f) 6. Straight edge g) 7. Balance accurate to 1g 								
		b)	8 Contain	ers for water	content dete	ermination					
		i)	g Thermo	statically cor	trolled hot a	ir oven					
5	Theory, Formula, Principle, Concept	Field insitu Equat Xpd= Where moist	ield density is defined as weight per unit volume of soil mass in the field at isitu conditions. quations are; $\varsigma_{pd} = \varkappa_{pt/(1+w)} gm/cm^{3}$ OR $\gamma d = \gamma t/(1+w) kN/m^{3}$ (/here, pd = dry density, $\blacksquare_{\gamma} d = dry$ unit weight, \varkappa_{pt} = field moist density, γt =field noist unit weight, w =water content, $\blacksquare_{\gamma} w =$ unit weight of water = 9.81 kN/m ³								
6	Procoduro	2)	Dotormin	the internal	1000000000000000000000000000000000000		$r V_c in cm^3 \Lambda$	ndwoigh			
	Program, Activity, Algorithm, Pseudo Code	e) c) d) f) g) The w proce	the cutter Select the and level Place the the hamm Remove t the cutter of the cutter of the cutter Take a sm and seal it The field t	accurate to a area in the f t. cutter over the rer until top of Take out the car with knife and sample of properly. est may be r	ield where the me ground wi of the cutter is le the cutter and straight cutter with the cutter with the cutter with the cutter with the cutter with the cutter	th the dolly a s just below the by digging u remove the c edge. the soil (M2). e site of wate ther places it etermined in equation for	required to be and drive the the ground le p to the botto dolly and trim er content det f required. the laborato <u>r determining</u>	e found out cutter with evel. om level of both sides cermination ry as per the γd OR ρd.			
7	Block Circuit	P.000				544460110	actorraining	ja oripu.			
	Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table,	Lengt	h of core cu	tter l=	cm						
	Look-up Table, Output	Diame Volum	eter of core o	cutter d=	cm						
		VOLUN			- CIII						

		Sl.N	Doutioulous	Test nos.				
		О.	Particulars	1	2	3		
		1	Mass of empty cutter (M1), gms					
		2	Mass of cutter + wet soil (M2), gms					
		3	Volume of core cutter (Vc) cm ³					
		4	Mass of empty container (M3), gms					
		5	Mass of container + wet soil (M4), gms					
		6	Mass of container + dry soil (M5), gms					
		7	Water content (w)=(M4-M5)/(M5-M3)					
		8	Field moist density ρt (kN/m³)					
		9	Dry density pd (kN/m³)					
9	Sample Calculations		1	I	<u> </u>	<u> </u>		
10	Graphs, Outputs							
11	Results & Analysis	Average	insitu field dry density: =					
12	Application Areas	Ability to	find dry density of given soil					
13	Remarks	-	· · · ·					
14	Faculty Signature with Date							

Experiment 04 : Consistency limits

-	Experiment No.:	4	Marks		Date		Date		
					Planned		Conducted		
1	Title	Consi	stency limits	5					
2	Course Outcomes	Stude	tudents are able to find the consistency limits of soil						
3	Aim	Deter	mination of I	he liquid lim	it by Casagra	nde's metho	d		
4	Material /	a)	A mechar	ical liquid lin	nit apparatus	(casagrande	e type) with g	rooving	
	Equipment		tools.	-		-		-	
	Required	b)	Evaporatir	ng dishes, wa	ash bottle etc				
		c)	Balance a	ccurate to 0.	01 g.				
		d)	Airtight co	ntainer to de	etermine wate	er content.			
		e)	Oven to m	aintain temp	perature at 10	5 °C to 110 °C	C.		
		f)	desiccato	r and other a	ccessories.				
5	Theory, Formula,	Consi	stency of fin	e-grained so	ils may be de	efined as the	relative ease	with which	
	Principle, Concept	a soil	can be remo	olded. Consis	tency limits r	nay be cated	gorized into t	hree limits	
		callec	l Atterberg li	mits.					
		They a	are 1) Liquid	limit 2) Plast	ic limit and 3)	Shrinkage li	mit		
		The l	iquid limit i	s the moist	ure content	at which th	ne groove, f	ormed by a	
		standa	ard tool into	the sample	of soil taken	in the standa	ard cup, close	es for 10 mm	
		on be	eing given 2	5 blows in a	a standard r	nanner. This	is the limiti	ng moisture	
		conte	nt at which t	he cohesive	soil passes f	rom liquid sta	ate to plastic	state.	
		Flow i	ndex lf=(w1-	w2)/log (N2/	/N1)=	-			
6	Procedure,	1.A re	presentative	sample of	mass of abo	ut 120 gm p	bassing throu	ıgh 425 μ IS	
	Program, Activity,	sieve	is taken for	the test. Mix	the soil in ar	n evaporatino	g dish with di	stilled water	

11	Results & Analysis	Flow index If=
		Liquid Limit=%
12	Application Areas	Determination of plasticity index of soil
13	Remarks	
14	Faculty Signature	
	with Date	

-	Experiment No.:	4	Marks		Date		Date			
	T:+1 -	0			Planned		Conducted			
1		Consis	stency limits	to find the o		mite of coil				
2	Louise Oulcomes	Dotorr	nis are able	to find the co	pit by Cono [nits of soil	nothod			
3	Matorial /	Deten	Cono Pon	ne Liquid Lii		Penetration	nethou			
4	Fauipment	a/	CONEPEN	ellometer						
	Required	b)	Spatula.							
5	Theory, Formula,	The lic	quid limit is a	determined b	based on per	netration resi	stance of soi	L.		
	Principle, Concept			·						
6	Procedure,	a)	About 120	gm. of air dr	ied soil from	thoroughly	mixed portio	n of material		
	Program, Activity,		passing 42	25 micron IS s	sieve is obtai	ned.				
	Code	b)	Distilled w	stilled water is mixed to the soil thus obtained in a mixing disc to form						
			a uniform	paste.						
				innorm paste.						
		C)	Then the	wet soil pas	ste is transfe	erred to the	cylindrical of	cup of cone		
			penetrom	eter apparatı	us, ensuring	that no air is	trapped in th	is process.		
		d)	Finally the	wat soil is k	wolod up to	the top of th	o cup and p	lacad on the		
		u/	base of th	e cone pene	trometer app	baratus.	ie cup anu p			
				·						
		e)	The pene	trometer is s	so adjusted	that the cor	ne point just	touches the		
			surface of	the soil past	e in the cup	and the initia	al ready is to k	be taken.		
		f)	The vertic	al clamp is t	hen released	d allowing th	ne cone to pe	enetrate into		
			soil paste	under its c	wn weight	for 5 secon	ds. After 5 s	seconds the		
			penetratio	n of the cone	e is noted to	the nearest i	millimeter.			
		a)	The test is	ropostod at	loact to have	o four coto o	studuos of p	opotration in		
		g)	the range	of 14 to 28 m	iedst to nav Im	e lour sets c	or values of p	enetration in		
			the range	01 14 10 20 11						
		h)	The exact	moisture co	ntent of each	n trial is deter	rmined			
		(i	Draw a c	Draw a graph representing water content (11) on y axis and conc						
		1/	penetratio	n on x-axis.	wate					
		j)	The water	content co	rresponding	to a cone	penetration of	of 20 mm is		
			taken as li	quid limit.						
		1								

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
0	Look-up Table, Output	Sl. No.	Cup No.	Weight of cup (w ₁)	Weight of cup + Wet soil (w ₂)	Weight of cup + Dry soil (w ₃)	Water Content $\omega = \frac{(w_2 - w_3 - w_3)}{(w_3 - w_3)}$	Penetrati on (mm)
		1						
		2						
		3						
		4						
		5						
		6						
		7						
		8						
0	Sample							
9	Calculations							
10	Graphs, Outputs		45	Water co	ntent V/s Pe	enetration C	Graph	
		Wa	40					
		ter	35					
		cont	25					
		ent	20 15					
		(%)	10					
			0	1	1	1	I	
			0	10	20	30	40	50
					Penetratio	n (mm)		
		1 * . * 1 1* **	C		0/			
11	Results & Analysis	LIQUID limit (DT SOIL = W _L =		%			
13	Remarks				3011			
14	Faculty Signature							
	with Date							

-	Experiment No.:	4	Marks	Date	Date	
				Planned	Conducted	

1	Title	Consistency limits					
2	Course Outcomes	Students are able to find the co	nsis	tency l	imits c	of soil	
3	Aim	Determination of Plastic Limit of	of the	e soil			
4	Material /	a) Porcelain evaporating dish.					
	Equipment	b) Flat glass plate.					
	Requirea	 c) Balance accurate to 0.0 d) Apparatus for water corr 	1 g. topi	+ dictrik	Nution		
E	Theory Formula	The Plastic limit of soil may be	dofi	nod ac	that w	/ator	content at which soil starts
5	Principle Concept	crumbling when rolled into thre	ads	of 3mr	n dian	neter	
			0.0.0	0.0			
		Plasticity Index(Ip) = (LL – PL)					
6	Procedure,	a) Select a representative sam	ple	of fine-	-graine	ed so	il of about 20 gms passing
	Program, Activity,	through 420 μ IS sieve. Mix it	with	distill	ed wa	ter tł	noroughly on a glass plate
	Algorithm, Pseudo	such that the palm of the soil	car	n be ro	olled ir	nto a	thread of 3 mm diameter.
	Code	Allow some time for the proper	dist	ributio	n mixe	d wit	h water.
		b) Take about 10 gm of this wei	. saii ct h	. and ro	that it	to a t	nread on a glass plate with
		diameter. If the thread cracks h	st D befoi	e sucri re attai	nina 3	mm	diameter and a little more
		water, knead it and roll again. I	f the	e rolling	a can l	be do	one to diameter less than 3
		mm, mix the soil, knead it to	rer	nove s	same	extra	moisture in the soil. This
		process has to continue till the	e sar	nple c	rumble	es jus	st at about 3 mm diameter.
		Collect the crumbled soil and d	leter	mine i	ts wate	er cor	ntent.
		c) Repeat the process to get at	leas	t three	water	cont	ent determination.
-	Dia ala Cina sit	d) The water content so obtaine	ed is	the pla	astic lii	nit of	the soil
/	Block, Circuit, Modol Diagram						
	Reaction Equation						
	Expected Graph						
8	Observation Table,	Trail No	1	2	3	4	
	Look-up Table, Output	Weight of Container (W1)					_
		Weight of Container+Wet soil					
		(W2)					
		Weight of Container+dry soil					_
		(W3)					
		$\frac{1}{1}$					_
		(\X/3-\X/1)					
9	Sample						
	Calculations						
10	Graphs, Outputs						
11	Results & Analysis	The Plastic limit of soil is = $W_{P=}$ -				^	0
		Plasticity Index (Ip)=					
12	Application Areas	Determination of plasticity index	x of	soil			
13	Remarks						
14	Faculty Signature						
	with Date						

-	Experiment No.:	4	Marks		Date		Date	
					Planned		Conducted	
1	Title	Cons	istency limits	5				
2	Course Outcomes	Stude	ents are able	to find the c	onsistency lir	nits of soil		
3	Aim	Dete	Determination of Shrinkage Limit of soil sample					
4	Material /	′a)	a) 2 nos of porcelain evaporating dish, about 12 cm in diameter within a flat					

	Equipment	bottom.
	Required	b) 3 nos of shrinkage dish made of non-corroding metal, having a flat bottom,
		45 mm diameter and 15 mm high.
		c) A glass cup of about 50 mm diameter and 25 mm high.
		 I wo numbers glass plates of size 75×75 mm, one plate of plane glass and the other with three metal propas
		e) Spatula balance accurate to 0.01 g, oven etc.
		f) Mercury
		g) Desiccator and other accessories.
5	Theory, Formula,	The shrinkage limit of soil is the minimum water content at which a soil can be
	Principle, Concept	completely saturated or it is the water content at which the reduction in water
		content will not result in change in volume of soil sample.
		$w_{z} = \frac{(M_{1} - M_{z}) - (V_{1} - V_{2})\rho_{w}}{100} \times 100$
		Shrinkage limit=, M
		$SP = M_s$
		$SK = \frac{V_2 \rho_{\rm ex}}{V_2 \rho_{\rm ex}}$
		Shrinkage ratio, 27 *
		$V_{2} - V_{2}$
		$V_s = \frac{1}{V} \times \frac{1}{V} \times 100$
		Volumetric shrinkage ^V 2
6	Procedure,	a) Determine the mass of the clean, empty shrinkage dish. Fill the
	Algorithm Doudo	shiftikage dish to overitowing with mercury. Remove the excess by
	Code	mass of the mercury in the shrinkage dish. This mass when divided by
		the unit mass of mercury gives the volume of the dish which itself
		represents the volume of the wet soil mass to be placed in the shrinkage
		dish.
		b) Take about 100 gm of soil sample passing 425 micron IS sieve.
		c) Place about 30 g of soil in evaporating dish and mix it thoroughly with
		soil becomes pasty enough to be readily worked into the shrinkage dish
		without entrapping air bubbles. The water content of the soil paste shall
		be approximately equal to the liquid limit of the soil.
		d) Coat the inside surface of the shrinkage dish with a thin layer of silicon
		grease to prevent the adhesion of the soil to the dish. Fill the shrinkage
		dish by well mixed soil paste to one third its volume and tap it on a firm
		cushioned surface. Place some more soil and repeat this process until
		the paste is thoroughly compacted and all included air has been
		removed. When the dish is completely filled up, strike oil the excess soil
		outside surface of the shrinkage dish
		e) Record the mass of the shrinkage dish with the wet soil mass in it. Allow
		the soil pat to dry in air until the colour of the pat turns from dark to light,
		which may take one day to about a week depending upon the type of
		soil. Then, dry the pat in an oven to constant mass. Cool it in a desiccator
		and record the mass of the shrinkage dish with the dry soil pat
		Immediately.
		n ressing the glass with three prones. Place the cup with more in the
		evaporating dish without spilling any mercury from the cup. Place the
		oven dried soil pat on the surface of the mercury in the cup. Flace the
		carefully force the pat into the mercury by means of glas plate with
		prongs. Collect the displaced mercury and record its mass. Determine its
		volume, which itself represents the volume of the dry soil pat.
		g) Conduct three trials for each soil and report the average value of the

-				
		7	Mass of wet soil M ₁ = (6) – (5)	
		8	Mass of shrinkage dish + dry soil	
		9	Mass of dry soil M _s = (8) – (5)	
		10	Mass of mercury dish + mercury equal to in volume of dry pat	
		11	Mass of mercury displaced by dry pat =(10) – (1)	
		12	Volume of dry pat V ₂ = (11)/13.6	
9	Sample Calculations			
10	Graphs, Outputs			
11	Results & Analysis	Ws=% S.R= V.S=		
12	Application Areas	Determination of pla	asticity index of soil	
13	Remarks			
14	Faculty Signature with Date			

Experiment 05 : compaction test

-	Experiment No.:	5	Marks		Date		Date	
					Planned		Conducted	
1	Title	com	paction test					
2	Course Outcomes	Stude dens	ents are able ity using Star	e calculate t Indard Procto	he optimum r Test	moisture co	ntent and m	aximum dry
3	Aim	Mois	Moisture content –Dry density relationship by Standard Proctor compaction test					
4	Material / Equipment Required	1. A c 100 r detac high. 2. A n free f 3. A s 4. 4.7! 5. Bal (b) wi	ylindrical me nm and an ir chable base netal ramme fall of 310 mn teel straight 5 mm I.S. siev ance – (a) wi th a capacity	etal mould of nternal affect plate and a r of 50 mm d n. edge about 3 /e th a capacity r of 200 g and	capacity 100 ive height of removable ex iameter with 30 cm in leng of 10 kg and d accuracy of	00 cm 3 , wit 127.3 mm. T stension coll a circular fac th and with c accuracy of 0.01 g	h an internal he mould is ar approxima ce and mass one beveled 1 g	diameter of fitted with a ately 60 mm 2.6 kg with a edge.

	 6. Thermostatically controlled hot air oven. 7. Airtight and non-corrodible containers for water content determination 8. Mixing tools like tray, trowel and spatula. 								
5	Theory, Formula, Principle, Concept	Bulk density $\rho t = (M2-M1)/V$							
		Dry density $\rho d = \rho t/(1 + w)$							
		Dry density ρd for zero air voids line.							
		pu = Or w/(1 + (wO/S))							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. Measure the inner diameter and inner height of the cylindrical m hence, calculate the volume of the mould. Compare them with standar 2. Take about 3 kg of air dried soil passing 4.75mm IS sieve and mix suitable amount of water depending on the soil type (For sandy and soils an initial	ould and d values. t it with a d gravelly						
		pisture content of 4 to 6% and for cohesive soils, an initial moisture content of p -10)% to (w p -8)% would be suitable, where w p is the plastic limit of the l). Keep the soil in a sealed container for saturation for a minimum period of out 16 hrs.							
	 (w p -10)% to (w p -8)% would be suitable, where w p is the plastic limit of the soil). Keep the soil in a sealed container for saturation for a minimum period of about 16 hrs. 3. Clean the mould with the base plate and record its mass. Attach the collar to the mould. Place it on a solid base such as concrete floor. 4. Remix the soil thoroughly. Compact the moist soil in to the mould, with the collar attached, in three equal layers, each layer being given 25 blows from a 2.6 kg rammer dropped from a height to 310mm above the soil surface. The blows should be uniformly distributed over the surface of each layer. The surface of each layer of the compacted soil shall be roughened with a spatula before laying the next layers. The final layer shall project not more than 6 mm above the top of the mould after the collar is removed. 5. Remove the collar and level off the compacted soil surface to the top of the mould carefully. Then, record the mass of the mould and place it on the mixing tray. Keep a representative soil sample of the specimen for water content determination. 7. Mix the remaining soil with the reminder of the originally mixed soil in the tray. Add water in suitable increments to the soil sample and mix the soil thoroughly and repeat the above procedure. 								
		ZAV line.							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	•							
8	Observation Table, Look-up Table, Output	ation Table, Diameter of the mould (D) = cm p Table, Height of the mould (H) = cm Volume of the mould (V) = cm ³ Mass of the rammer=2.6 kg Free fall of the rammer=310 mm							
		Test No. 1 2 3	4						
		Mass of empty mould M ₁ gm Volume of mould, cm ³							

		Mass of mould + sample,M ₂ ,gm Mass of wet soil, M,gm Wet density, ρ_t g/cm ³ Water content, w% Dry density, ρ_d , gm/cm ³ W1 for calculation % of saturation line ρ_d , gm/cm ³ for ρ_d , gm/cm ³ for ρ_d , gm/cm ³ for
		(OMC)
9	Sample Calculations	(of optimum) Moisture content (w)>
10	Graphs, Outputs	
11	Results & Analysis	Maximum dry density $\rho d = \underline{\qquad} g/cm3$
		Optimum moisture content, $w = \ \%$
12	Application Areas	Find OMC and MDD, plan and asses field compaction program
13	Remarks	
14	Faculty Signature with Date	

-	Experiment No.:	5	Marks		Date		Date				
					Planned		Conducted				
1	Title	com	paction test								
2	Course Outcomes	Stude dens	ents are able ity using Star	e calculate th Indard Proctor	ne optimum	moisture co	ntent and m	aximum dry			
2	Airea	Moiet	Agisture content Dry density relationship by Medified Drector compaction test								
3	АШ	PIOIS	volsture content - Dry density relationship by Modified Proctor compaction test								
4	Material /	′1. A c	. A cylindrical metal mould of capacity 1000 cm 3 , with an internal diameter of								
	Equipment	150 n	150 mm and an internal affective height of 127,3 mm. The mould is fitted with a								
	Required	detad	chable base	plate and a i	removable e	xtension coll	ar approxima	ately 60 mm			
		high.									
		2. A n	netal ramme	r of 50 mm d	iameter with	a circular fac	ce and mass	4.9 kg with a			
		free f	all of 450 mr	n.							
		3. A s	teel straight	edge about 3	30 cm in leng	th and with o	one beveled	edge.			
		4. 4.7	5 mm I.S. siev	/e							
		5. Bal	.ance – (a) wi	th a capacity	of 10 kg and	accuracy of	1 g				
		(b) wi	p) with a capacity of 200 g and accuracy of 0.01 g								
		6. The	ermostatical	y controlled	hot air oven.	<u> </u>					

	7. Airtight and non-corrodible containers for water content determination 8. Mixing tools like tray, trowel and spatula.										
5	Theory, Formula, Principle, Concept	Bulk density $\rho t = (M2-M1)/V$									
		Dry density $\rho d = \rho t/(1 + w)$									
		Dry density od for zero air vo	ids line.								
		$\rho d = GPw/(1 + $	(wG/S))								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Measure the inner diameter and inner height of the cylindrical mould and hence, calculate the volume of the mould. Compare them with standard values. 2. Take about 5 kg of air dried soil passing 4.75mm IS sieve and mix it with a suitable amount of water depending on the soil type (For sandy and gravelly soils, an initial moisture content of 4 to 6% and for cohesive soils, an initial moisture content of (w p -10% to (w p -8% would be suitable, where w p is the plastic limit of the soil). Keep the soil in a sealed container for saturation for a minimum period of about 16 hrs. 3. Clean the mould with the base plate and record its mass. Attach the collar to the mould. Place it on a solid base such as concrete floor. 4. Remix the soil thoroughly. Compact the moist soil in to the mould, with the collar attached, in five equal layers, each layer being given 25 blows from a 4.9 kg rammer dropped from a height to 4500mm above the soil surface. The blows should be uniformly distributed over the surface of each layer. The surface of each layer of the compacted soil shall be roughened with a spatual before laying the next layers. The final layer shall project not more than 6 mm above the top of the mould after the collar is removed. 5. Remove the collar and level off the compacted soil surface to the top of the mould carefully. Then, record the mass of the mould and place it on the mixing tray. Keep a representative soil sample of the specimen for water content determination. 7. Mix the remaining soil with the reminder of the originally mixed soil in the tray. Add water in suitable increments to the soil sample and mix the soil thoroughly and repeat the above procedure. 8. Conduct a minimum of 5 determinations such that the optimum moisture content lies within this range. 9. Plot the Indian Standard light compaction curve (w % along x-axis and X d along y- axis). Obtain OMC and X d max from the plotted curve. Plot also the ZAV line. 									
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output	Diameter of the mould (D) = cm Height of the mould (H) = cm Volume of the mould (V) = cm ³ Mass of the rammer=4.9 kg Free fall of the rammer=450 mm									
		Test No.	1	2	3	4					
		Mass of empty mould M ₁ gm Volume of mould, cm ³ Mass of mould + sample,M ₂ ,gm Mass of wet soil, M,gm	Test No. 1 2 3 4 Mass of empty mould M1gm Volume of mould, cm ³ Image: Comparison of mould + sample, M2, gm Image: Comparison of mould + sample, M2, gm								

		$ \begin{array}{ c c c c c } \hline \mbox{Wet density, ρ_t g/cm^3$} \\ \hline \mbox{Water content, $w\%$} \\ \hline \mbox{Dry density, ρ_d, gm/cm^3} \\ \hline \mbox{W1 for calculation} \\ \mbox{of saturation line $\%$} \\ \hline \mbox{ρ_d, gm/cm^3 for $S=100\%$} \\ \hline \mbox{ρ_d, gm/cm^3 for $S=80\%$} \end{array} $
9	Sample	
	Calculations	
		Max.dry density (r _a max) Compaction curve Zero air voids (Saturation curve) Coptimum moisture content (OMC) Cortinum Moisture content (OMC) Moisture content (w) →
11	Results & Analysis	Maximum dry density $\rho d = \underline{\qquad} g/cm3$
		$\frac{1}{2}$
12	Application Areas	רוחם טויוי, plan and asses field compaction program
13	Remarks	
14	Faculty Signature with Date	

Experiment 06 : Co-efficient of permeability test

-	Experiment No.:	6	Marks		Date Planned		Date Conducted			
1	Title	Co-eff	icient of pe	rmeability te	st					
2	Course Outcomes	Stude types	udents are able to compute the co-efficient of permeability through different permeability through different permeasive of soils by constant head and falling head methods							
3	Aim	Deterr	termination of Co-efficient of Permeablity of a soil sample by Constant Head method							
4	Material / Equipment Required	a) b) c)	 a) A constant head permeameter shown schematically in the figure. b) For a typical setup the following dimensions are used Internal diameter of the mould = 100 mm. Effective height of the mould = 127.3 mm. Detachable collar: 100 mm diameter and 60 mm height. Drainage base, having a porous disc. 							
5	Theory, Formula, Principle, Concept	Perme The e perme	ermeability of soil can be determined from Darcy's Law. The equation to determine the permeability of soil using constant head the ermeability test is given by:							

		k = (Q(ST))/(A(ST)(ST)) Where, $k = coefficient of permeability$
		Q = volume of water collected in time t
		h = head causing flow
		A = cross sectional area of sample
		L = length of sample
6	Procedure, Program, Activity, Algorithm, Pseudo	A constant-head test assembly is as given in below figure.
	Code	Select a representative soil mass of about 2.5 kg properly mixed.
		Fill the soil into the mould and compact it to the required dry density by making use of a suitable compacting device.
		Set the assembly as shown in figure after saturating the porous stones.
		The water supply is properly adjusted to maintain constant head.
		Open the valve and saturate the sample by allowing water to flow through for a sufficiently long time to remove all air-bubbles.
		When the whole setup is ready for the test, open the valve, allow the water to flow through the sample collect water in a graduated jar starting simultaneously a stopwatch. Note the time to collect a certain quantity of water Q.
		Repeat the test three times and determine the average of Q for the same time interval t.
		Measure the head h, length of sample L, and calculate the cross sectional area A of the sample.
		Calculate k by making use of equation
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Length of Soil sample L=cm Diameter of Soil sample D=cm Area of soil sample A= Constant head h=cm

		Sl.No	Quantity of water Q=ml	Time t=sec	k=(QL)/(Ath) (cm/sec)			
		1						
		2						
		3						
		4						
9	Sample							
	Calculations							
10	Graphs, Outputs							
11	Results & Analysis	Coefficient o	f Permeability of soil k=	cm/	/sec			
12	Application Areas	Design of ea	rth dams					
13	Remarks							
14	Faculty Signature							
	with Date							

-	Experiment No.:	6	Marks		Date		Date				
					Planned		Conducted	<u> </u>			
1	Title	Co-eff	icient of pe	rmeability te	st						
2	Course Outcomes	Stude: types	nts are able of soils by c	e to compute onstant heac	e the co-effic I and falling I	ient of perm head method	leability throu ds	ugh different			
3	Aim	Deterr Perme	mination of (eability Test	Co-efficient c for fine grain	f Permeablit ed soils.	ty of a soil sa	mple by Falli	ng Head			
4	Material / Equipment Required	d) e) f)	A falling-h For a typic i. In ii. Ef iii. De iv. Dr Weighing	For a typical setup the following dimensions are used i. Internal diameter of the mould = 100 mm. ii. Effective height of the mould = 127.3 mm. iii. Detachable collar: 100 mm diameter and 60 mm height. iv. Drainage base, having a porous disc. Weighing balance, and other accessories.							
5	Theory, Formula, Principle, Concept	Perme The be	rmeability of soil can be determined from Darcy's Law. ne below equation can be used: k = ((2.3 × a × L)/(A×(t2-t1)))×log10(h1/h2)								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	a) b) c) d) e) f) g) h)	Open the soil sampl before sta Fill the sta allow the then close Select in a determine Open the start the s Record th from √h1h condition Repeat th Stop the t Take a sm	valves in the le is fully saturing the test andpipe with water to flow the valves. advance the he athe height walves and fil topwatch. topwatch. to h2. These has been est e step (e) at le est and disco all quantity of	standpipe ar irated with o water keepin out through heights h1 an h1h2 and ma l the standpi als for water e two time in ablished. east after cho onnect all the f the sample	nd the bottor ut any entrap ig the valves the outlet pi ad h2 for the ark this heigh pe with wate to fall from h tervals will b anging the h parts.	m outlet. Ens oping of air b V1 and V2 op pe for some water to fall a to n the stan er up to heigh eight h1 to √l ee equal if a s eights h1 and ontent determ	ure that the ubble pen and time and and d pipe. at h1 and h1h2 and tead flow d h2. hination.			
7	Block, Circuit.										

	Model Diagram, Reaction Equation, Expected Graph					
8	Observation Table, Look-up Table, Output	Length of Soil sa Diameter of Soil Area of soil sam Area of stand pij	ample L= sample D= ple A= pe a=	cm -cm		
		Sl.No	Initial Head (h1) cm	Final Head (h2) cm	Time t In seconds	k=((2.3 × a × L)/ (A×t))×log10(h1/h2)
9	Sample Calculations					
10	Graphs, Outputs					
11	Results & Analysis	Coefficient of Pe	rmeability of so	l k=	cm/	'sec
12	Application Areas	Design of earth	dams			
13	Remarks					
14	Faculty Signature with Date					

Experiment 07 : Shear strength tests

-	Experiment No.:	7	Marks		Date Planned		Date Conducted			
1	Title	Shea	r strength tes	sts	i tannea		conducted			
2	Course Outcomes	Stude from testa	ents are able different la nd triaxial tes	e to calculate boratory tes st	e the shear s ts Direct s	trength of so shear test ,l	bil, and shear Unconfined (r parameters compression		
3	Aim	Detei	Determination of shear parameters C and $\acute{ extsf{0}}$ of the soil by Direct Shear test							
4	Material / Equipment Required	Shea	Shear box apparatus coonsisting of (a) Shear box 60 mm square and 50 mm deep, (b) Grid plates, porous stones, etc. (c) Loading device (d) Other accessories.							
5	Theory, Formula Principle, Concept	Box s Only sand. filled dens from test a trimn they Could For c	hear tests ca 1. samples 2. using box sh As undistur with the sa ity and water So far clay the field. The apparatus an hed and leve are compact ombs equation lay soils S=c+σtanΦ	an be used fo s. ear test appa- bed sample ind obtained content to s soil is conce a sample is c d introduced eled. 19f tests ed in the mo on is used for	or the followin Quick and con Slow test on a aratus may ca s of sand is I from the fi timulate field erned the ur cut to the rec into the app s on remolde uld to the rec r computing	ng tests. Insolidated quarry type of se arry the drain not practica eld and cor l conditions a ndisturbed sa juired size ar paratus. The e ed soils of cl quired densit the shear par	uick tests on oil. hed or slow shible to obtain npacted to t as far as poss amples may nd thickness and surfaces ay samples a ay and moistu rameters.	clay soil near tests on n, the box is the required ible. be obtained of box shear are properly are required; ire content.		

		For sand	t .							
		S= \V/horo	σtanΦ	t cohosid	n					
		where,	σ=norn	nal load	applied	on the s	urface o	of the sp	ecimen.	
			Φ =ang	le of she	aring re	sistance				
6	Procedure,	a)	Place th	e sampl	e of soil	into the	shear b	ox, deter	mine the	e water content
	Program, Activity, Algorithm, Pseudo	b)	and dry Make all	density (. the nec	of the sc essarv a	al compa diustme	acted. ents for a	applvina	vertical I	load. for
	Code		measuri force. et	ng vertic c.	al and la	ateral m	ovemen	ts and m	neasuren	nent of shearing
		c)	Apply a	known le	oad on t	he speci	imen an	d then k	eep it co	nstant during
			the cour shearing after pla	se of the 1, and qu cing the	e test (fo iick tests vertical	or conso 5 apply t load). A	lidation he shea .djust th	keep0 it ring with e rate of	for a lon out cons strain as	g time without solidation soon required of the
		d)	Shear th	e specir	nen till f	ailure of	the spe	cimen is	noticed	or the shearing
			resistan	ce decre	ases. Ta	ke the re	eadings	of the ga	auges du	iring the
		e)	Remove	roneran	WATER GROOVES		_10	ADING YOKE	t	t, and
		f)	determi Repeat t		WATER INLE	1-1-	7-	PRESSURE PAD)	
7	Rlock Circuit				P3	A	Stan B	<u>nin</u>	-	
/	Model Diagram,				8	POROUS S	TONE		A	
	Reaction Equation,				Tom	SAMPL	e P	4	PROVING RING	
			HORIZONTAL FORCE LARGE							
					<u>uni</u>	<u>uuuu</u>	WATER	GROOVES	INER	
8	Observation Table,	The test	sample	of cohe	sion les	s soil wit	h a little	cohesic	n is aive	n in tabular
	Look-up Table,	form be	low.			2			5	
	Output	(1)	Soil dens Data she	sity pd = eet for sa	1.62 g/c ample 1:	m° (for sam	ple 2. 3.	and 4 si	milar dat	a sheets are to
		be prep	ared)		'					
			Initial are	ea = Ao =	6×6 = 36	o cm². In	itial thic	kness = 2	2.4 cm. σ	= 0.5 kg/cm ²
							_			
		Horizo	Horizo	Correc ted	Provin a rina	Force (ka)	ζ (ka/c	Vetical Dial	Vertic	Ht(cm)
		dial	displa	area(c	readin	(itig)	m ²⁾	readin	Dis(m	
		gauge	ceme nt	m²)*	g			g	m)	
		g	(mm)							
		0	0	36	0	0				

					r					
		* Correc	ted area	in cm² is	s given k	by b (b-h	orizonta	l displac	cement)	
		b= wid	th of she	ear box=	6cm					
		From th	ree sam	ples the	followin	g results	s are obt	tained		
			Test N	0		Norma	lstress		Shear st	ress at failure
			105114	0		σ(kg/	/cm²)		ζ(μ	(g/cm ²)
			1			0	.5			
							_			
			2			1.0				
			З			1	5			
		From the results a graph of Horizontal displacement VS Shear stress is drawn								
					l - 44l					
		Monrsc	ircles a	re also p	lollea.					
		From Mo	ohr's cire	cle the fo	ollowing	details a	are obta	ined;		
		Major pr	rincipal s	stress σ1	=	kg/cr	m²			
		Minor pr	rincipals	stress σ2	=	kg/cn	1²			
		Inclinatio	on to ma	ajor princ	cipal stre	ess θ1=	de	grees		
		Inclinatio	on to mi	nor princ	cipal stre	ess θ2=	de	egrees		
				•				0		
9	Sample Calculations									
10	Graphs, Outputs									
11	Results & Analysis	Angle o [.]	f interna	l friction	Ó=					
		Unit coh	nesion (=	-ka/cm	2				
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation								
		characteristics of soil								
13	Remarks									
14	Faculty Signature									
i	with Date									

-	Experiment No.:	7	Marks		Date		Date			
					Planned		Conducted			
1	Title	Shea	near strength tests							
2	Course Outcomes	Stude from testa	tudents are able to calculate the shear strength of soil, and shear parameters om different laboratory tests Direct shear test ,Unconfined compression estand triaxial test							
3	Aim	Dete comp	rmination of pressive strer	shear para	meters C a y unconfined	and Ó of tl compressio	ne soil and n test.	unconfined		
4	Material / Equipment	The	unconfined o	compression	test equipm	ent may be	used.			

	Required									
5	Theory, Formula, Principle, Concept	Determine t tests may b field or a rei content. The pressure.	etermine the confined compressive strength of a given soil specimen. The ests may be carried out either on an undisturbed soil sample brought from the eld or a remolded and compacted to the required density and moisture ontent. The only pressure that is applied in this case is the axial vertical ressure.							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	a) The wat leng b) Set nec c) App con of a d) Ske e) Taka deta	 a) The sample is prepared in the same way as for a triaxial test. Its natural water content and dry density are determined prior to the testing. The length (Lo) and diameter (do) are also measured. b) Set the sample on the pedestal of the equipment and complete all the necessary adjustments for applying on axial loads. c) Apply the axial load at a strain of about 0.5 to 2 % per minute and continue the load till the sample fails OR the deformation reaches 20 % of axial strain. d) Sketch the failure pattern and measure the angle of failure if possible. e) Take a small sample of soil from the failure zone for water content determination. 							
8	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Observation Table, Look-up Table, Output	a) Do b) Init	= cm, L $=$ 0 ial bulk det	Dial guage cm, Ao = cm nsity, pt = g	Handle	Proving ring Drg —Moving plat nical seatings	e			
	ouput	c) Init Strain dial reading From the re	ial water co	Axial Strain %	% Corrected area, A(cm ²)	Proving ring reading (PR)	Axial Load P(kg)	Stress $\sigma=P/A$ (kg/cm ²) is obtained		
9	Sample Calculations	a) The Whe	axial strain, a ere, $\Delta L = char$	$\varepsilon\% = (\Delta L/Lo)$ nge in length	×100 of specimen.					

		Lo = Initial length of specimen.
		b) Corrected area A,
		$A = Ao/(1-\varepsilon)$
		Where, Ao = initial sectional area op the specimen.
		c) Compressive stress, $\sigma 1$, (which is the principal stress) is $\Delta \sigma 1 = P/A$ where P = axial load.
		A plot of σ 1 versus ε gives the maximum stress, which is the unconfined compressive strength of the soil specimen.
		Observations and tabulation of the test results of a particular specimen:
10	Graphs, Outputs	
11	Results & Analysis	Average unconfined compressive stress qu=kg/cm ²
		Angle of internal friction
		Undrained cohesive strengthkg/cm ²
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation characteristics of soil
13	Remarks	
14	Faculty Signature	
	with Date	

-	Experiment No.:	7	Marks		Date		Date		
					Planned		Conducted		
1	litle	Shear	strength tes	sts					
2	Course Outcomes	Stude from testar	ents are able different la nd triaxial tes	e to calculate boratory tes st	e the shear s ts Direct s	trength of sc shear test ,l	oil, and shea Jnconfined	r parameters compression	
3	Aim	To de	termine the by triaxial	shear param shear test	eters of the s	soil sample C	cand Ø of the	e soil sample	
4	Material / Equipment Required	a) b)	 a) A triaxial cell to a capacity of 1000kN/m² b) Accessories such as rubber membrane, membrane stretcher, sample trimming device, split mould, knife, stopwatch etc., 						
5	 Theory, Formula, The sample used for the tests in standard triaxial equipment is 38mm diame Principle, Concept The sample used for the tests may be carried out on any type of soil provided of makes a sample to simulate field conditions. The tests on c- Ø soil or on purely clay soil may be on Undisturbed samples Remolded samples The types of tests required are to be decided by taking into account the field conditions. 						nm diameter provided one		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	a) b) c) d) e)	Place the around it, for condu- For condu- drained te For the sa drainage o Apply the The failur minutes.	e specimen set the load cting the test acting an un est keep the mple to be o outlet open. axial compre e of the sar	on the pec ling cap and t. drained test valve open. consolidated essive force a mple may ta	lestal, place complete al , close the o under an all at a constant ake place wi	the rubber I the formali drainage val round press rate of strain thin a perio	r membrane ties required ve and for a ure, keep the 1. d of 5 to 15	

		f) Af m cc	 f) After dismantling the set up, take out the specimen from the rubber membrane, weigh the sample and keep a small part of it for water content determination. 								
8	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Initial l	Initial length of the specimen Locm Initial diameter of the specimen docm								
	Look-up Table, Output	Initial of Initial of Cell pre	Initial diameter of the specimen do=cm Initial area of the specimen Ao =cm² Cell pressure σ 3kg/cm2								
		Strain dial reading	ΔL(mm)	$Axial Strain % = \Delta L/L_0$	Correct ed area, A(cm ²)	Proving ring reading (PR)	Deviato r Load P(kg)	Deviato r Stress $\sigma=P/A$ (kg/cm ²)	Vertical stress $\sigma 1 = \sigma$ 3+devia tor stress		
		The same pressures	tabular co	blumn is re	peated fo	r different :	samples u	nder differ	rent cell		
		A graph of	f Strain vs	Deviator st	tress is plo	otted					
	Causala	Mohr circles	are drawn to	o plot Colom	b's failure en	evelope.					
9	Calculations										
10	Graphs, Outputs										
11	Results & Analysis	Angle of ir	nternal fric	tion Ø=							

		Unit cohesion C=kg/cm²
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation
		characteristics of soil
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08 : Consolidation test

-	Experiment No.:	1	Marks		Date		Date				
					Planned		Conducted				
1	Title	Cons	olidation test	:							
2	Course Outcomes	Stude	ents are ab	le to calcul	ate co-effici	ents related	to compre	essibilty	and		
		conse	olidation by c	lifferent meti	nods	~					
3	Aim	Detei	mination of a	compression	index and co	o-efficient of	consolidatio	n by			
	Matorial		d ring conco	lidomotorac	chown in the	figure and	athor accoss	orioc			
4	Fauipment	Alixe	a ning conso	liuumetei as	SHOWITHTUR	e ligule and c		JIIES			
	Required										
5	Theory, Formula	The r	ourpose of th	nis test is to	obtain the fo	llowing infor	mation from	the test	s on		
	Principle, Concept	undis	turbed or dis	sturbed samp	oles of soil br	ought from t	he field.				
			1. Pressure	e-void ratio c	urves.						
			2. Compre	ompression index, Cc.							
		-	3. Coefficie	ent of consol	idation, cv.						
		The f	following eq	uations are	necessary fo	r the compu	tation.				
			a) E = (h-hs)	h-hs)/hs							
			D = MS + MS	(G×A×pW)							
			c) $CC = 0.07$	(log (P/ P0)							
			For the loc	7×11507150	n na method						
			$C_{V} = 0.848$	\times (h ² 00/ t 00)						
			For the sa	uare root fitti	, na method.						
		Whe	re, hs = heigh	nt of solids in	the ring.						
			h = thickne	ess of the sar	nple at any s	tage of the b	pest.				
			E = void ra	tio of the sar	nple at any s	tage of the te	est.				
			Ms = dry n	hass of the so	olids in the rim	ng.					
		The	A = Interna	il sectional ai	rea of the ring	j. Na oftha taa	t roculto ara				
		i ne c		tion required	f the ring analys	the area A	of the ring				
			B) The	e inicki less d e specific ara	wity G of the	solids	or the mig.				
			p) III	specific gre		501103.					
6	Procedure,		b) Deteri	mine mass o	f the consolic	dation ring (N	11)				
	Program, Activity	,	c) Transf	er the soil sa	mple (disturk	ped or undist	urbed) into t	he ring a	and		
	Algorithm, Pseudo		level t	he surface w	vith a straight	edge. Use ti disturbed a	ne standard p	oractice	for		
	Code		ring is	g a compact	sample from	Find the ma	soil. In all the	cases in	he		
			the rir	na (M2) A sm	all sample of	this soil is ta	ss of wet sai	r conten	t		
			deterr	nination.				Conten			
			d) Place	the ring in th	e consolidor	neter, set the	e loading dev	vice and			
			arrang	ge the dial ga	luge for takin	g readings. E	Before setting	g the ring	g,		
			the po	prous stones	should be sa	turated in ac	lvance.				
			e) Apply	a setting loa	d of 5 kN/m	² and take th	e initial readi	ng. Allov	X/		
			the lo	ad to remain	tor 24 hours.	LINI /ma2 aur -1	taka dialarri	100 100 -	المحاد		
			י מסו י מסו	t plansod ti	$\frac{10}{14}$	KIN/111- and	Lake ulat gal	uye reao 180 and			
			minut	es, Follow	the same n	rocedures f	or the next	SUCCes	ssive		

		g) h) i)	 loadings of 20,50,100,200,400 and 800 kN/m². g) After the completion of the final loading, unload the specimen in steps. First reduce to half of the final load and allow it to remain for 24 hours and take the DR. h) Dismantle the setup, remove the ring from its position and find its mass (M3) after removing the excess water remaining on the surface by blotting it. i) Dry the soil with the ring in an oven cool it finds its mass (M4). 								
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output	Empty mas area of the Diameter o volume of t Thickness Sp.gr solids	Empty mass of the ring (M1) area of the ring (A) Diameter of the ring (d) volume of the ring (VR) Thickness of the ring (hR)								
		Load Intensity (kN/m²)	10	20	50	100	200	400			
		Elapsed time (min)		1	Dial Gauge	e readings					
		0									
		0.25									
		0.50									
		1									
		2									
		4									
		8									
		15									
		60									
		120									
		240									
		480									
		1440									
		From the c Mass o Height Compre	consolidation f dry soil gra of solids, hs ession of sa	n test results am = M4-M1 s = Ms/(G × A mple under	s the followi (× Pw) seating load	ing informat d = ∆hi	ion can be	obtained.			

r		
		Initial thickness of sample under seatring load, ho = (hR - ∆hi) Initial void ratio, eo = (ho∕hs) – 1
		Thickness of sample at any stage of loading, h = (ho - Δ h)
		Where Δh = compression of sample obtained from DR
		Height of voids at any stage of loading, $\Delta he = (h - hs)$
		Void ratio at any stage of loading, $e = (\Delta he/h)$
		Now e-log p curve can be plotted by use of the load applied P and the void ratio compression index Cc can be obtained from the curve. Curves giving the relationships between the dial readings (DR) and log t or \sqrt{t} can be drawn and the coefficient of consolidation, Cv can be obtained from these curves.
0	Sample	
3	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Ability to find consolidation strength parameters to assess strength and deformation characteristics of soil
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 09 : Laboratory vane shear test

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Labo	ratory vane s	hear test				
2	Course Outcomes	Stude	ents are able	to calculate	the shear s	trength of so	oil, and shear	^r parameters
		from	laboratory \	/ane shear te	est			
3	Aim	To de	termine Coh	esion or She	ar Strength c	of Soil		
4	Material / Equipment Required	1. 2.	Vane shea The soil s	ar test appara ample	atus with acc	essories		
5	 Theory, Formula, Vane shear test can be used as a reliable in-situ test for determining the shear Principle, Concept strength of soft-sensitive clays. The vane may be regarded as a method to be used under the following conditions. Where the clay is deep, normally consolidated and sensitive. Where only the undrained shear strength is required. It has been found that the vane gives results similar to that as obtained from unconfined compression tests on undicturbed samples. 							ng the shear lethod to be otained from
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. 2. 3. 4. 5.	A posthole the require The rod is the require At the oth head is us speed of a a cylinder The area round end The first r	borer is first depth pushed or d ed depth. er end of the ed to apply a bout 0.1 deg of soil consists of the s. moment of the ear value.	employed to driven carefu rod just abo a horizontal to ree per secc he periphera nese areas c	o bore a hole Illy until the ve the surfac orque and th ond until the l surface of livided by th	e up to a poir vanes are e ce of the grou is is applied soil fails, thu the cylinder e applied m	nt just above mbedded at und a torsion at a uniform s generating and the two oment gives

7	Block, Circuit, Model Diagram, Reaction Equation,	
	Expected Graph	
8	Observation Table, Look-up Table,	Force observed P=kg
	Output	Eccentricity (lever arm) x=cm
		Turning moment Px=kg-cm
		Length of the vane L=cm
		Radius of the vane blades r=cm
9	Sample Calculations	Undrained Shear strength of Clay Cu= (Px)/(2*.П*r²(L+2/3*r))
10	Graphs, Outputs	
11	Results & Analysis	Undrained Shear strength of Clay Cu=kg/cm ²
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation characteristics of soil
13	Remarks	
14	Faculty Signature with Date	

Experiment 10 :Demonstration of Swell pressure test, Standard penetration test and boring equipment

-	Experiment No.:	10	Marks		Date		Date		
					Planned		Conducted		
1	Title	Demo	nstration of	Swell pressu	re test, Stand	dard penetra	tion test and	l boring	
		equip	ment						
2	Course Outcomes	Stude	nts are able	to understar	nd the demor	nstration of t	he tests.		
3	Aim	Demo	nstration of	Swell pressu	ire test				
4	Material /	′ a)	Consolido	meter					
	Equipment	b)	Dial gauge	Ð					
	Required	C)	reservoir						
		d)	Soil trimm	ing tools,					
		e)	Water						
		(1)	Oven						
		g) Desiccator							
		n)	Balance a	nd Container	S				
5	Theory, Formula	, The p	ressure which	ch the expans	SIVE SOIL EXER	ts, if the soil i	is not allowed	1 to	
	Principle, Concept	swell	or the volun	he change of	the soil is ar	rested is kno	own as Swell	ing Pressure	
		The m	L. Doin nurnocc	of overelling	proscure too	t is to dotorn	aina tha intrir		
		pressu	ure of the ex	pansive soil 1	tested.	t is to determ		ISIC Swelling	
6	Procedure,	A. San	nple Prepara	ation:					
	Program, Activity	, 1. Reje	ect at least 3	omm (more i	f desired) sai	mple from oi	ne end of the	: sample.	
	Algorithm, Pseudo	2. Clea	an the conso	olidation ring	and gradual	ly insert the o	consolidation	ring in the	
	Code	sampl	le by pressir	ng with hands	and careful	ly removing t	the soil arour	nd it.	
		3. The	soil specim	en cut shall p	project aroun	d 10mm on e	either side of	the ring.	
		4. Trim voids	n, smooth ar if any.	nd flush the s	specimen wit	h both ends:	of the ring a	nd fill all the	
		5. The	tesť may be	e conducted	for both soal	ked as well a	s unsoaked (conditions. If	
		the sa	ample is to I	be soaked, ir	n both cases	of compact	ion, put a fill	ter paper on	
		the to	p of the soil	and place th	e adjustable	stem and pe	erforated plat	e on the top	
		of filte	er paper.	•	-		•		
		6. Clea	an the ring f	rom outside.					
		7. Fro	m disturbe	d sample co	ompact the	soil with d	esired field	density and	

		noisture content and then repeat the above procedure.						
7	Block, Circuit, Model Diagram, Reaction Equation,	A Test procedure: Assembly of the Consolidometer Test is to be done as per Fig. 1. . The free swell reading under the seating shall be recorded at different time ntervals till the equilibrium is reached. It takes around 6-7 days to reach equilibrium. (ReferTable 1) . Consolidate the swollen sample under different pressures record the ompression dial readings till the sample reaches steady state for each load. Refer Table 2) . Increase the consolidation loads until the specimen attains its original volume.						
	Expected Graph	AIM 132						
8	Observation Table,	sl.no	Elapsed time (hours)	Swell dial readings (mm)				
	Look-up Table, Output	1	0					
		2	1					
		3	2					
		4	4					
		5	8					
		6	12					
		7	16					
		8	20					
		9	24					
		10	28					
		11	32					
		12						
		13						
		14						
		15						
		16						

LABORATORY PLAN - CAY 2019-20

		sl.no	Applied pressure (kg/cm2)	Change in thickness of specimen (mm)			
		1	0.05				
		2	01				
		3	0.25				
		4	0.5				
		5	1				
		6	2				
		7	4				
		8	8				
		9	16				
9	Sample Calculations						
10	Graphs, Outputs	 Plot swelling dial reading (refer Table 1) with elapsed time as abscissa and swelling dial reading as ordinates on natural scale. If the curve so drawn becomes asymptotic with the abscissa, the swelling has reached its maximum and hence the swelling phase shall be stopped, and the consolidation phase shall be started. The compression readings (refer Table 2) shall be plotted with change in thickness of expanded specimen as ordinates and consolidation pressure applied as abscissa in semi- logarithmic scale. The swelling pressure exerted by 					
		interpolation.					
11	Results & Analysis						
12	Application Areas	Understand In situ shear st	rength characteristicts				
13	Remarks						
14	Faculty Signature with Date						

-	Experiment No.:	10	Marks		Date		Date		
					Planned		Conducted		
1	Title	Demo	Demonstration of Swell pressure test, Standard penetration test and boring						
		equip	ment						
2	Course Outcomes	Stude	ents are able	to understar	nd the demo	nstration of t	he tests.		
3	Aim	Demo	onstration of	Standard pe	netration tes	t			
4	Material /	r							
	Equipment Required	a)	Tripod (to	give a clear	height of ab	out 4 m; one	of the legs of	of the tripod	
			should ha	ve ladder to	facilitate a pe	erson to reac	h tripod head	(.k	
		b	Tripod hea	ad with hook					
		c)	Pulley						
		d	Guide pipe	e assembly					
		e)	Standard	split spoon s	ampler				
		f)	A drill rod	for extending	g the test to a	deeper depth	าร		
		g	Heavy dut	Heavy duty post hole auger (100 mm to 150 mm diameter)					
		h)	Heavy dut	ty helical aug	er				
		i)	Heavy dut	ty auger exte	nsion rods				
		j)	Sand baile	er					

		k)	Rope (about 15 m long & strong enough to lift 63.5 kg load repeatedly)
		L)	A light duty rope to operate sand bailer
		m)	Chain pulley block
		n)	Casing pipes
		0)	Casing clamps
		p)	Casing couplings
		q)	Measuring tapes
		r)	A straight edge (50 cm)
		S)	Tool box
5	Theory, Formula, Principle, Concept		
6	Procedure, Program Activity	α)	Identify the location of testing in the field
	Algorithm, Pseudo	β)	Erect the tripod such that the top of the tripod head is centrally located
	Code		over the testing spot. This can be reasonably ensured by passing a rope
			over the pulley connected to the tripod head and making the free end of
			the rope to come down and adjusting the tripod legs such that the rope
			end is at the testing spot. While erecting and adjusting the tripod legs,
			care should be taken to see that the load is uniformly distributed over
			the three legs. This can be achieved by ensuring the lines joining the tips
			of the tripod legs on the ground forms an equilateral triangle. Further, it
			should be ensured that the three legs of the tripod are firmly supported
			on the ground (i.e. the soil below the legs should not be loose and they
			should not be supported on a sloping rock surface or on a small boulder
			which may tilt during testing.)
		χ)	Advance the bore hole, at the test location, using the auger. To start with
			advance the bore hole for a depth of 0.5 m and clear the loose soil from the bore hole.
		δ)	Clean the split spoon sampler and apply a thin film of oil to the inside
			face of the sampler. Connect an A-drill extension rod to the split spoon
			sampler.
		ε)	Slip the 63.6 kg weight on to the guide pipe assembly and connect the
			guide pipe assembly to the other end of the A-drill rod.
		\$)	The chain connected to the driving weight is tied to the rope passing
			over the pulley at the tripod head. The other end of the rope is pulled
			down manually or with help of mechanical winch. By pulling the rope
			down, the drive weight, guide pipe assembly, A-drill rod and the split
			spoon sampler will get vertically erected.
		γ)	A person should hold the guide pipe assembly split spoon sampler to be
		.,	vertical with the falling weight lowered to the bottom of the guide
			assembly.
		η)	Now place a straight edge across the bore touching the A-drill rod. Mark

			the straight edge level all round the A-drill rod with the help of a chalk or any other marker. From this mark, measure up along the A-drill rod and mark 15 cm, 30 cm and 45 cm above the straight edge level. Lift the driving weight to reach the top of the guide pipe assembly travel and allow it to fall freely. The fall of driving weight will transfer the impact load to the split spoon sampler, which drive the split spoon sampler into the ground. Again lift the drive weight to the top of travel and allow it to fall freely under its own weight from a height of 75 cm. as the number of blows are applied, the split spoon sampler will penetrate into the ground and the first mark (15 cm mark) on the drill rod approaches the straight edge.
		ι)	Count the number of blows required for the first 15 cm, second 15 cm and the third 15 cm mark to cross down the straight edge.
		φ)	The penetration of the first 15 cm is considered as the seating drive and the number of blows required for this penetration is noted but not accounted in computing penetration resistance value. The total number of blows required for the penetration of the split spoon sampler by 2 nd and 3 rd 15 cm is recorded as the penetration resistance or N-value.
		к)	After the completion of the split spoon sampler by 45 cm, pull out the whole assembly. Detach the split sampler from A-drill rod and open it out. Collect the soil sample from the split spoon sampler into a sampling bag. Store the sampling bag safely with an identification tag for laboratory investigation.
		λ)	Advance the bore hole by another 1 m or till a change of soil strata which ever is early.
		μ)	The test is repeated with advancement of bore hole till the required depth of exploration is reached or till a refusal condition is encountered. Refusal condition is said to exist if the number of blows required for the last 30 cm of penetration is more than 100.
		ν)	The test will be repeated in number of bore holes covering the site depending on the building area, importance of the structure and the variation of the soil properties across the site.
		0)	The SPT values are presented either in the form of a table or in the form of bore log data.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph		

F. Content to Experiment Outcomes

1. TLPA Parameters

	Tabl	e 1: TLPA					
Expt- #	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms' Learning Levels	Final Bloo ms'	Identified Action Verbs for	Instructi on Methods	Assessment Methods to Measure
			for Content	Level	Learning	for Learning	Learning
A	В	С	D	Ε	F	G	Н
1	Visual soil classification.	06	-L2 -L3	L3	Apply	Lecture	Assignment
2	Grain size analysis	03	-L2 -L3	L3	Apply	Lecture	Assignment
3	In-situ density tests	03	-L2 -L3	L3	Apply	Lecture	Assignment
4	Consistency limits	03	-L2 -L3	L3	Apply	Lecture	Assignment
5	compaction test	03	-L2 -L3	L3	Apply	Lecture	Assignment
6	Co-efficient of permeability test	03	-L2 -L3	L3	Apply	Lecture	Assignment
7	Shear strength tests	09	-L2 -L3	L3	Apply	Lecture	Assignment
8	Consolidation test	03	-L2 -L3	L3	Apply	Lecture	Assignment
9	Laboratory vane shear test	03	-L2 -L3	L3	Apply	Lecture	Assignment
10	Demonstration of Swell pressure test, Standard penetration test and boring equipment	06	-L2	L2	Understa nd	Lecture	Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome – 15CV54

Expt	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
- #	Outcome	Concepts		Justification	(1.Action Verb,	
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the	3.Condition /	Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	М	N
1	-	Index	Index	Index properties of	-Apply	compute the index
	-	properties	properties	soil.	-Index properties of	properties of soil by
					soil.	different laboratory
						experiments.
2	-	Soil	Soil	Partial size	-Apply	Draw the particle
	-	classificati	classification	distribution of soil.	-Soil Classification.	size distribution
		on				curve of different
						types of soils and
						classify the soils as
						per the result
3	-	Analysis	Analysis of	Field density of	-Apply	determine field
	-	of Field	Field Density	sand.	-Field Density.	density using sand
		Density				replacement and
						core cutter
						methods, and

						compare the result	
4	-	Consisten	Consistency	Consistancy limit.	-Apply	find the consistency	
	-	cy Limits	Limits		-Consistancy limits.	limits of soil	
5	-	Analysis	Analysis of	Standard proctor	Detailing	calculate the	
	-	of	Density and	test.	-Moisture content.	optimum moisture	
		Density	Moisture			content and	
		and	content			maximum dry	
		Moisture				density using	
		content				Standard Proctor	
		D	D	D		lest	
6	-	Permeabil	Permeability	Permeability test.	-Apply	compute the co-	
	-	Ity	Analysis		-Permisibility	efficient of	
		Anatysis				permeability	
						typos of soils by	
						constant head and	
						falling head	
						methods	
7	_	Shear	Shear	Shear strength of	-Apply	calculate the shear	
'	_	Strength	Strength of	soil by laboratory	-Soil strength.	strength of soil, and	
		of Soils	Soils	method.		shear parameters	
						from different	
						laboratory tests	
						Direct shear test	
						Unconfined	
						compression test	
			<u> </u>	2		and triaxial test	
8	-	Consolida	Consolidation	Compressibility and	-Apply	calculate co-	
	-	tion index	Index	consolidation.	-Consolidation.	emcients related to	
						compressibility and	
						different methods	
0	_	Shear	Shear	Shear strength of	-Annly	calculate the shear	
9	_	Strength	Strength of	soil	-Shear strength	strength of soil and	
		of Soils	Soils	5011.	Shear Strength	shear parameters	
						from laboratory	
						Vane shear test	
10		Demonstr	Demonstratio		-Understand	understand the	
		ation	n			demonstration of	
						the tests.	